
www.manaraa.com

Owned Policies for Information Security

Hubie Chen Stephen Chong
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA

{hubes,schong}@cs.cornell.edu

Abstract

In many systems, items of information have own-
ers associated with them. An owner of an item of in-
formationmaywant the system to enforce a policy that
restricts use of that information; we call such a policy
an owned policy. Owned policies can be used in many
contexts, including information flow, access control,
and software licensing. In this paper we introduce and
study a general framework for owned policies.

Relationships between security policies for a given
system may be dependent on system aspects that
change between or during system execution. As a re-
sult, there may be only partial knowledge of the
structure of security policies available when analyz-
ing a system statically. We demonstrate that our
framework permits static reasoning about owned poli-
cies under partial knowledge, and we also exhibit
tractability results for the problem of inferring secu-
rity policies.

1. Introduction

In many systems, items of information have own-
ers associated with them. An owner of some item of
information may want the system to enforce a pol-
icy that restricts use of that information. We call
such a policy an owned policy [16, 11]. In this pa-
per, we introduce and study a general framework
for specifying, reasoning about, and inferring owned
policies.

To illustrate the diversity and pervasiveness of
owned policies, we present three brief examples of
contexts in which they occur.

• Information flow. Static information flow
control allows the enforcement of end-to-end se-
curity properties, and in particular, the prop-
erty of noninterference [5]. A system is nonin-

terfering if the low security outputs of the sys-
tem are independent of the high security in-
puts, and thus, an observer with low security
clearance cannot deduce any information about
high security data. In a system with mutu-
ally distrusting principals, different principals
may have different information flow require-
ments; when information originating from dif-
ferent principals is combined, the information
flow restrictions of all principals must be en-
forced. The owners in this example are the prin-
cipals, and the policies restrict the flow of in-
formation. The decentralized label model [16]
is a model of owned information flow policies.

• Access control. Consider a system with infor-
mation resources, such as files, that are owned
by principals. Suppose that the owner of a file
can specify an access control list—a list of prin-
cipals who may read the resource. Now con-
sider a procedure that principals may invoke,
which accesses one or more resources. Assum-
ing the procedure executes with the authority
of only the invoking principal, the access con-
trol list for the procedure should be at least
as restrictive as the access control lists of the
resources. The owners in this example are the
principals, and the policies restrict access to in-
formation. Owner Retained Access Control [11]
is a model of owned access control policies.

• Software licensing. Software producers dis-
tribute software components under licenses
that include restrictions on when the soft-
ware may be composed with other components
to form new software. The GNU General Pub-
lic License (GPL) [4] is an example of such
a software license: software distributed un-
der the GPL may be used as components of
other software provided the resultant soft-
ware also is distributed under the GPL. The



www.manaraa.com

owners in this example are the software pro-
ducers, and the policies restrict the composi-
tion of the software components.

Given the relevance of owned policies to a broad
range of systems, a general framework for specify-
ing and reasoning about owned policies is desirable.
Such a framework facilitates the study of owned
policies in these systems: results proved for the gen-
eral framework will hold for all instantiations of the
framework.

The general framework for owned policies pre-
sented and studied in this paper has two features
that we wish to highlight:

• Reasoning with partial knowledge of se-
curity policy structure. Some aspects of a
system are subject to change between or dur-
ing executions of that system. For example,
users may leave or join the system, users may
have privileges and roles added or revoked, and
files may have access permissions changed. The
structure of security policies may be dependent
on some of these system aspects. For example, if
a security policy permits only members of the
group G to access information, then the user
Alice is permitted to access information only if
she is a member of the group G; however, Al-
ice may be added or removed from the group
between executions of the system.

Our framework permits static reason-
ing about owned policies, even when only
partial knowledge of the run-time security pol-
icy structure is available. Furthermore, one
can use the framework to reason using addi-
tional knowledge that may be revealed through
run-time testing of the security policy struc-
ture.

• Inference of policies. Program analysis is an
important tool for proving systems secure. Pro-
gram analysis typically requires the explication
of the security policies for the information the
program manipulates, often by program anno-
tations. The burden on the program developers
to write down security policy specifications can
be significant, especially for large systems. In-
ference of security policies can reduce the spec-
ification burden on developers, allowing them
to elide some of the annotations. This enables
both the quicker development of secure sys-
tems, and the reduction of annotation “clut-
ter” in programs. Inference is particularly com-
plex when there is only partial knowledge of the
run-time security policy structure.

Our framework for owned policies is
amenable to the inference of security poli-
cies. We present a number of positive tractabil-
ity results for the inference problem within our
framework.

Our model generalizes the decentralized label
model of Myers and Liskov [16], which is a model of
owned policies for information flow.

The remainder of the paper is organized as fol-
lows. In Section 2 we present the basic syntax and
semantics of our owned policy model. Some instan-
tiations of the model are given as examples in Sec-
tion 3. The structure of the model is presented and
discussed in Section 4. In Section 5 we introduce
mechanisms to reason about owned policies with
only partial knowledge of the structure of security
policies. Section 6 introduces the problem of secu-
rity policy inference, and presents a number of pos-
itive tractability results for instances of this infer-
ence problem within our framework. Finally, in Sec-
tions 7 and 8, we discuss related work and conclude.

2. Owned Policy Model

In this section we present first the syntax and
then the semantics of our model for owned policies.

2.1. Syntax

Throughout, O will denote a finite set of own-
ers. An owner hierarchy is a relation ≥o⊆ O × O.
An owner hierarchy models an “acts for” relation:
if o1 ≥o o2, then the owner o1 is able to act on be-
half of the owner o2. We assume that ≥o is reflexive
and transitive, that is, ≥o is a preorder. Owners typ-
ically represent principals in a system, but they can
also be used to model groups and roles, through the
use of the acts-for relation [15]; for example, given a
group G, a special owner oG represents that group,
and all principals that are members of the group G
are able to act for oG. The acts-for relation is simi-
lar to the speaks for relation [9].

Throughout, P will denote a finite set of poli-
cies for specifying information use. A policy hierar-
chy is a relation ≥p⊆ P × P . A policy hierarchy
models an “at least as restrictive” relation: when
p1 ≥p p2, a value with policy p2 can be used any-
where that a value with policy p1 could be. We also
assume that ≥p is reflexive and transitive, that is,
≥p is a preorder.

An owner of an item of data may specify a policy
that she requests to be enforced on that data; such
a specification forms an owned policy. Formally, an



www.manaraa.com

owned policy is a pair consisting of an owner o ∈ O
and a policy p ∈ P , and is denoted o:p. We use the
capital letters I and J to denote owned policies. The
operator o(·) returns the owner of an owned policy;
the operator p(·) returns the policy of an owned pol-
icy. Thus, o(o:p) = o and p(o:p) = p.

A label is a set of owned policies, denoted
{o1:p1, . . . , on:pn}, where each oi:pi is an owned
policy in the label. We use the letter L to denote a
single label, and we use L to denote a class of la-
bels where all labels are over the same owner set O
and policy set P . For a fixed owner set O and pol-
icy set P , we denote the class of all labels over O
and P by Lall.

Labels can be associated with data. Intuitively,
if a label {o1:p1, . . . , on:pn} is associated with
some item of data, then each owner oi has specified
that uses of the data should respect the policy pi,
or a more restrictive policy; a system that enforces
the label should ensure that all owners’ specifica-
tions are met. If an owner o does not own a policy
in a label, then the label is interpreted as if o does
not place any restrictions on the use of the data,
as will be seen in Section 2.2. The model is agnos-
tic as to the origin of labels. In particular, whether
a given owner o ∈ O is allowed to specify a pol-
icy on an item of data is outside the scope of the
model.

A hierarchy H = (≥o,≥p) is a pair consisting of
an owner hierarchy and a policy hierarchy. We use
≥H

o and ≥H
p to denote the owner hierarchy and pol-

icy hierarchy of H, respectively. We use H to de-
note a class of hierarchies, where all the owner hier-
archies are over the same owner set O, and all the
policy hierarchies are over the same policy set P .

Example 2.1: Let the owner set O be
{Alice,Bob,Chuck}, and let the relation ≥o be
the reflexive transitive closure of {(Chuck,Bob)},
that is, ≥o is the relation {(Chuck, Bob), (Alice,
Alice), (Bob, Bob), (Chuck, Chuck)}. Let the pol-
icy set P be {TopSecret,Classified,Unclassified},
and let ≥p be the reflexive transitive closure of
{(TopSecret,Classified), (Classified,Unclassified)}.
Intuitively, the policy TopSecret is the most re-
strictive policy, while the policy Unclassified is the
least restrictive policy, since a value that is Un-
classified could be used (for example, read,
copied, sent, etc.) anywhere a value that is TopSe-
cret could be.

In the label {Alice:Classified, Bob:TopSecret},
Alice specifies that the policy Classified should be
enforced, while Bob specifies that the policy TopSe-

cret should be enforced; Chuck does not specify any
policy in this label.

2.2. Semantics

We now provide a semantics for labels relative to
a hierarchy H. We present two possible semantics
for labels, using two different operators. The first,
the X operator, provides a semantics for any possi-
ble hierarchy H. The second operator, the Y oper-
ator, defines a more succinct semantics than the X
operator, but is only applicable to hierarchies with a
certain structure; the Y operator is defined in terms
of the X operator.

2.2.1. X Operator The X operator provides a
semantics of a label L, with respect to a hierarchy
H. The semantics of a label L is a set of permis-
sions; a permission is a pair (o, p) ∈ O × P hav-
ing the meaning that owner o gives permission for
data labeled with L to be used according to pol-
icy p.

Definition 2.2: The X operator is defined for ev-
ery hierarchy H and label L as follows:

X(H,L) =
{(o, p) | ∀I ∈ L. o(I) ≥H

o o ⇒ p ≥H
p p(I)}

While owned policies and permissions are both
pairs of owners and policies, we use two different
terms and different notation to emphasize the dif-
ferent contexts in which they are used: owned poli-
cies (and labels) are independent of any hierarchy;
permissions constitute the interpretation of a label
under a specific hierarchy.

Two key properties of the X operator highlight
how a specific hierarchy is reflected in the interpre-
tation of a label. First, permission (o, p) is contained
in X(H,L) only if every owner who can act for o also
permits the data to be used according to policy p.
Equivalently, if an owner o does not give permis-
sion for the data to be used according to some pol-
icy p, then no owner subordinate to o (that is, no
owner whom o can act for) can give permission for
the data to be used according to p.

Property 2.3: For every hierarchy H, label L,
owners o, o′ ∈ O and policy p ∈ P , if o′ ≥H

o o and
(o, p) ∈ X(H,L), then (o′, p) ∈ X(H,L).

Second, if permission (o, p) is contained in
X(H,L), then o also permits the data to be
used according to policy p′, for every policy



www.manaraa.com

p′ that is at least as restrictive as p. This ac-
cords with the intended meaning of labels: if data is
labeled {o1:p1, . . . , on:pn} then each owner oi al-
lows the data to be used according to policy pi, or
a policy more restrictive than pi.

Property 2.4: For every hierarchy H, label L,
owner o ∈ O and policies p, p′ ∈ P , if p′ ≥H

p p
and (o, p) ∈ X(H,L), then (o, p′) ∈ X(H,L).

Example 2.5: Consider Example 2.1, where the
owner set O is {Alice,Bob,Chuck}, ≥o is the reflex-
ive transitive closure of {(Chuck,Bob)}, the pol-
icy set P is {TopSecret,Classified,Unclassified}
and ≥p is the reflexive transitive closure of
{(TopSecret,Classified), (Classified,Unclassified)}.
Let the hierarchy H be (≥o,≥p). The seman-
tics of the label {Alice:Classified, Bob:TopSecret}
is the following.

X(H, {Alice:Classified,Bob:TopSecret}) =
{(Alice,Classified), (Alice,TopSecret),
(Bob,TopSecret),
(Chuck,Unclassified), (Chuck,Classified),

(Chuck,TopSecret)}

Observe that Alice gives permission for every pol-
icy at least as restrictive as Classified , as per Prop-
erty 2.4, that is, for both of the policies Classi-
fied and TopSecret . Bob only gives permission for
the policy TopSecret . Since neither Chuck nor any
owner that can act for Chuck specified a policy in
the label, Chuck gives permission for every policy.
A system that enforced this label on an item of data
would have to treat the item of data according to
the policy TopSecret , since this is the only policy
that all owners permit.

Consider now the semantics of the label
{Alice:Classified, Chuck:TopSecret}.

X(H, {Alice:Classified,Chuck:TopSecret}) =
{(Alice,Classified), (Alice,TopSecret),
(Bob,TopSecret),
(Chuck,TopSecret)}

Even though Bob did not specify a policy in the la-
bel, since Chuck acts for Bob and Chuck only gives
permission for policy TopSecret, Bob only gives
permission for the policy TopSecret , as per Prop-
erty 2.3.

2.2.2. Y Operator For a given hierarchy H, if
we assume some structure on the preorder ≥H

p , then
the semantics of label L (that is, X(H,L)) has some

useful additional structure. In particular, if the pol-
icy hierarchy ≥H

p has greatest lower bounds then for
any label L and for every owner o, there is a least re-
strictive policy p such that (o, p) ∈ X(H,L).

Definition 2.6: A hierarchy H is a meet hierarchy
if ≥H

p has greatest lower bounds, that is, for any
p1, p2 ∈ P there exists a q ∈ P such that p1 ≥H

p q

and p2 ≥H
p q; and for any q′ ∈ P , if p1 ≥H

p q′ and
p2 ≥H

p q′ then q ≥H
p q′.1

Property 2.7: If H is a meet hierarchy, then for
any label L and any owner o ∈ O, there exists a p ∈
P such that (o, p) ∈ X(H,L) and for any (o, p′) ∈
X(H,L) it is the case that p′ ≥H

p p.

We can use Property 2.7 to define a useful alter-
native semantics for meet hierarchies that captures
the same information as the X operator, but in a
more succinct form. The semantics, instead of be-
ing sets of permissions, are functions from owners
to their corresponding least restrictive policy.

Definition 2.8: For a meet hierarchy H, and a sub-
set Q of P , the infimum of Q, denoted infHQ, is the
greatest lower bound in ≥H

p of all elements in Q.

Definition 2.9: The Y operator is defined for ev-
ery meet hierarchy H and label L as the function
from O to P such that

Y(H,L)(o) = infH{p | (o, p) ∈ X(H,L)}
= infH{p | ∀I ∈ L. o(I) ≥H

o o

⇒ p ≥H
p p(I)}

Example 2.10: The semantics of the labels in Ex-
ample 2.5 can be expressed by the Y operator.

Y(H, {Alice:Classified,Bob:TopSecret}) =
Alice 7→ Classified
Bob 7→ TopSecret
Chuck 7→ Unclassified

Y(H, {Alice:Classified,Chuck:TopSecret}) =
Alice 7→ Classified
Bob 7→ TopSecret
Chuck 7→ TopSecret

1 Note that if ≥H
p has least upper bounds and a bottom ele-

ment, it can be shown that≥H
p has greatest lower bounds,

where least upper bounds is defined analogously to great-
est lower bounds. By a bottom element, we mean an ele-
ment⊥ ∈ P such that for all p ∈ P , p ≥H

p ⊥.



www.manaraa.com

Note that for meet hierarchies, the hierarchies
on which the Y operator is defined, the seman-
tics provided by the X and Y operators are the
same. Given the semantics for a label L relative
to a meet hierarchy H under one of the opera-
tors, it is easy to compute the semantics under the
other operator. Indeed, the Y operator is defined
in terms of the X operator, and it is possible to
define the X operator in terms of the Y operator:
X(H,L) = {(o, p)|o ∈ O, p ≥H

p Y(H,L)(o)}.

3. Examples

In this section we present some instantiations of
our owned policy model.

3.1. Decentralized Label Model

In the decentralized label model of Myers and
Liskov [15, 16, 14], labels specify restrictions on how
information may flow. Principals may own data, and
in a decentralized label for an item of data, an own-
ing principal may specify policies, where a policy is a
set of principals, called a “reader set”. When a prin-
cipal o specifies the set R as a reader set on a data
item, then o requires that the data item be read only
by principals contained in the set R. There is a re-
flexive and transitive “acts for” relation � on prin-
cipals, and if some principal o is permitted to read
some data, then all principals who can act for o are
implicitly permitted to read the data too.

We can obtain the decentralized label model as
a particular instantiation of our model, in the fol-
lowing way. Let the owner set O be the set of prin-
cipals and let the set of policies P be the power set
of O. Let ≥o be the acts-for relation �. The rela-
tion≥p on the policy set P is also defined in terms of
�: for two reader sets of principals R1, R2 ∈ P , de-
fine R1 ≥p R2 if and only if for all owners o in R1

there is some owner o′ in R2 such that o can act for
o′, that is o � o′. In other words, the reader set R1

is “at least as restrictive” as the reader set R2 if ev-
ery principal permitted to read by R1 is also per-
mitted to read by R2. Our X(·, ·) semantic opera-
tor, when specialized to hierarchies induced by an
acts-for relation � (as above), is equivalent to the
semantic operator of the decentralized label model.2

The hierarchy (≥o,≥p) is a meet hierarchy; the
greatest lower bound of two reader sets R1 and R2

2 In some versions of the decentralized label model [14], the
owner of a policy is also implicitly a reader. For simplic-
ity, we ignore this detail, although extensions to our model
permit us to precisely capture Myers and Liskov’s model.

is R1 ∪ R2, since the principals who are either in
R1∪R2 or can act for a principal in R1∪R2 are ex-
actly the principals who are either in, or can act
for, a principal in R1 or R2. As such, the Y opera-
tor is well-defined for the hierarchy (≥o,≥p).

The semantics of a label is a set of permissions,
that is, a set of pairs (o,R), each with an owner o
and a reader set R. The semantics of a label can be
used to determine which principals can read data:
if a data item is labeled {o1:R1, . . . , on:Rn}, then
a principal r is permitted to read that data item
provided all principals o are prepared to allow r
to read the data item, that is, for every principal
o there is a reader set R with r ∈ R such that
(o,R) ∈ X((≥o,≥p), {o1:R1, . . . , on:Rn}). Equiva-
lently, principal r is permitted to read the data item
if for every principal o, the principal r is contained in
the reader set Y((≥o,≥p), {o1:R1, . . . , on:Rn})(o).

3.2. Access Control

A model similar to the decentralized label model
just described can be used to model access control
lists. Let O be a set of principals, with an acts-for re-
lation � (over O). The policy set P consists of pairs
of sets of principals: P = {(a, d) | a, d ⊆ O}. In the
policy (a, d), the set a is the set of principals that
are allowed access, and the set d is the set of prin-
cipals that are denied access. If owner o can act for
owner o′, and o′ is allowed access (o′ ∈ a), then o
is implicitly also allowed access; however, if o is de-
nied access (o ∈ d), then o′ is implicitly also denied
access.

Let ≥o be the acts-for relation �. The relation
≥p on the policy set P is also defined in terms of
�: for two access control lists (a, d) and (a′, d′), de-
fine (a, d) ≥p (a′, d′) if and only if for all owners o in
a there is some owner o′ in a′ such that o can act for
o′, and for all owners o′ in d′ there is some owner o in
d such that o can act for o′. In other words, the pol-
icy (a, d) is “at least as restrictive” as (a′, d′) if ev-
ery owner that (a, d) allows access to is also allowed
access by (a′, d′), and every owner that is denied ac-
cess by (a′, d′) is also denied access by (a, d).

The semantics of a given label can be used to de-
termine if a principal is allowed access, denied ac-
cess, or if access for that principal is undetermined
by the label. We omit the precise details, as they
are slightly too involved for our current purposes.
Roughly speaking, a principal r is denied access if
some owner denies r access; r is allowed access if r is
not denied access and all owners allow r access; oth-
erwise, r’s access is undetermined.



www.manaraa.com

3.3. No Owner Acts For Another

A natural restriction of the owned policy model
is obtained by not allowing any owner to act for an-
other owner – that is, by requiring the “acts for” re-
lation ≥o to be the equality relation on O, which we
denote by =O. In the decentralized label model pre-
sented above, this requirement corresponds to al-
lowing principals to act for other principals only in
their capacity as readers, and not in their capac-
ity as owners of policies.

In this restricted version of the model, when the
policy hierarchy ≥p of a hierarchy H having the
form (=O,≥p) has a least upper bound operation
t, every label L ∈ Lall is equivalent in H to a
label in which each owner owns at most one pol-
icy. In particular, if the label L is the set of owned
policies {o:p1, o:p2, . . . , o:pn} ∪L′, then the seman-
tics of L is equal to the semantics of the label
{o:(p1 t . . . t pn)}∪L′. (This is apparent by exam-
ining the definition of the X operator.) In light of
this property, it is natural to define a new class of
labels, Lown−one, containing those labels in which
each owner owns at most one policy. The class
Lown−one is much smaller than (and properly con-
tained within) the class Lall.

4. Structure of Labels

Our framework for owned policies makes few as-
sumptions on the owner and policy hierarchies, only
requiring that they be preorders. Nonetheless, un-
der any hierarchy it can be shown that the class of
labels form a lattice structure. In this section, we ex-
plain how this structure arises.

For a fixed set of owners O and policies P , given
any hierarchy H we can define a preorder vH on
the class of all labels, Lall. Intuitively, if L1 vH L2,
then label L1 is no more restrictive than L2 under
hierarchy H: if owner o gives permission for policy
p in L2, then o gives permission for p in L1, that is,
(o, p) ∈ X(H,L2) implies (o, p) ∈ X(H,L1).

Definition 4.1: For any hierarchy H, the preorder
vH is defined as follows: for any two labels L1, L2 ∈
Lall,

L1 vH L2 if and only if X(H,L2) ⊆ X(H,L1).

The equivalence relation ≡H is defined as follows:
for any two labels L1, L2 ∈ Lall,

L1 ≡H L2 if and only if L1 vH L2 and L2 vH L1.

Note that L1 ≡H L2 if and only if X(H,L1) =
X(H,L2).

When H is a meet hierarchy, we can express the
preorder vH in terms of the Y(H, ·) semantic oper-
ator.

Property 4.2: When H is a meet hierar-
chy, L1 vH L2 if and only if for every owner o ∈ O,
Y(H,L2)(o) ≥H

p Y(H,L1)(o).

Roughly speaking, the class of all labels Lall form
a join semilattice with respect to vH . Formally, to
obtain a join semilattice, we need to identify labels
that are equivalent under ≡H . Let Lall/ ≡H denote
the quotient set of Lall with respect to ≡H , namely
{[L]H | L ∈ Lall}, where

[L]H = {L′ ∈ Lall | L′ ≡H L}.

The relation vH on Lall induces a partial order on
Lall/ ≡H . We overload the vH notation and use it
to denote the induced ordering (where for S1, S2 ∈
Lall/ ≡H , S1 vH S2 if and only if there exist L1 ∈
S1 and L2 ∈ S2 such that L1 vH L2).

Theorem 4.3: For any hierarchy H, the structure
(Lall/ ≡H ,vH) is a join semilattice.

Proof: Fix an arbitrary hierarchy H. Define the
join operation tH as follows: for any two labels
L1, L2 ∈ Lall, define [L1]HtH [L2]H to be [L1∪L2]H ,
where ∪ denotes the usual set-theoretic union. It
is straightforward to verify that X(H,L1 ∪ L2) =
X(H,L1) ∩ X(H,L2) for any two labels L1, L2.
Thus, this join operation is well-defined and yields
the least upper bound of [L1]H and [L2]H .

Throughout this paper, we will use tH to denote
the join operation given in the previous proof. We
overload the tH notation, and also use L1 tH L2

to refer to some label L in the equivalence class
[L1]H tH [L2]H .

Information can be combined in many possible
ways, including by composition (for example, of
software components), and computation (for exam-
ple, the assignment statement z := x + y combines
information held in variables x and y, and places the
result in the variable z). Joins of labels arise natu-
rally when combining items of information: the la-
bel of the result should be at least as restrictive
as the label of each of the constituent inputs. That
is, the label of the result should be at least as re-
strictive as the join of all input labels. Theorem 4.3
demonstrates that for any hierarchy H, we can al-
ways find a least label satisfying this restrictiveness
condition.

The empty label {} (that is, the label with no
owned policies) is the element of Lall that is below



www.manaraa.com

all other elements with respect to the ordering vH ,
since X(H, {}) = O×P . Hence, the join semilattice
Lall/ ≡H is also a meet semilattice.

Corollary 4.4: For any hierarchy H, the structure
(Lall/ ≡H ,vH) is a meet semilattice.

We denote the meet operation on Lall/ ≡H with
uH , and overload it to use L1uH L2 to refer to some
label L in the equivalence class [L1]H uH [L2]H .

When the hierarchy H is a meet hierarchy, the
meet operation uH can be described in terms of the
Y operator. Suppose that for a meet hierarchy H,
the operation ∧ : P × P → P gives greatest lower
bounds with respect to ≥H

p . The meet of two labels
L1, L2 ∈ Lall, that is, L1 uH L2, is equivalent to

{o:(Y(H,L1)(o) ∧Y(H,L2)(o)) | o ∈ O}.

The meet of the labels has the property that for all
owners o, the policy Y(H,L1 uH L2)(o) is equal to
Y(H,L1)(o) ∧Y(H,L2)(o).

Meets of labels arise in situations dual to those
in which joins arise: if an item of information is
used to produce several different results, then the
label of that information must not be more restric-
tive than any of the labels of the results. In sum-
mary, joins arise when many labeled inputs are com-
bined to produce a single output, whereas meets
arise when one input is used to produce several la-
beled outputs.

5. Run-time Hierarchies

As mentioned in the introduction, when statically
analyzing a system it is typically unknown which hi-
erarchy will be in effect at run time. Despite this
lack of knowledge, it is desirable to be able to rea-
son statically about the run-time security properties
of the system, in particular, to prove that a system
will be secure regardless of which hierarchy is in ef-
fect at run time. In this section, we show how such
static reasoning can be performed using our model.

5.1. Classes of Hierarchies

To prove that a system will be secure regardless
of which hierarchy is in effect at run time, it suf-
fices to show that the system is secure for all hier-
archies that may be in effect at run time. We illus-
trate this idea with a simple example of pseudo-code
where program types are annotated with labels, as
in security typed languages. In a security typed lan-
guage, the type system of the language uses the la-
bel annotations to enforce security properties, such

as noninterference [5]. One way to achieve noninter-
ference is to ensure that if the value of a variable x
depends on the value of a variable y, then the la-
bel of x is at least as restrictive as the label of y.

Example 5.1: Consider the following segment of
pseudo-code, where program types are annotated
with labels over the same owner set O and policy
set P as in Example 2.1.

1 int{Chuck:TopSecret} x := ...;
2 int{Bob:Classified} y := ...;
3 int{?} z := x + y;

In the code above, the type of variable z does not
yet have a label, but we would like to determine a
suitable label, L, for the variable z, so that the pro-
gram is noninterfering.

Since the value of the variable x is used to com-
pute the value assigned to z at line 3, the label of z
must be at least as restrictive as the label of x, that
is, {Chuck:TopSecret} vH L, for any hierarchy H
that may occur at run time. Similarly, the label of z
must be at least as restrictive as the label of y, that
is, {Bob:Classified} vH L. These two requirements
on L can be combined into the single requirement
{Chuck:TopSecret} tH {Bob:Classified} vH L.

Assume that the class of hierarchies that can oc-
cur at run time contains two hierarchies: the hierar-
chy H1 = (≥H1

o ,≥H1
p ) which is the same as the hier-

archy from Example 2.1 (where Chuck ≥H1
o Bob

and TopSecret ≥H1
p Classified ≥H1

p Unclassified);
and the hierarchy H2 = (≥H2

o ,≥H2
p ), where ≥H2

o is
the equality relation, and ≥H2

p is the same as ≥H1
p .

If the hierarchy at run time is H1, then
{Chuck:TopSecret} is a suitable label for the vari-
able z. On the other hand, if H2 is the hier-
archy at run time, then {Chuck:TopSecret} is
not a suitable label, since it is not the case that
{Bob:Classified} vH2 {Chuck:TopSecret}, as
the permission (Bob,Unclassified) is in the set
X(H2, {Chuck:TopSecret}), but not in the set
X(H2, {Bob:Classified}).

In both hierarchies, however, the label
{Bob:Classified,Chuck:TopSecret} is suitable,
since for H ∈ {H1,H2} we have

{Chuck:TopSecret} tH {Bob:Classified} vH

{Bob:Classified,Chuck:TopSecret}

In the preceding example, the label
{Bob:Classified, Chuck:TopSecret} is at least
as restrictive as the join {Chuck:TopSecret} tH

{Bob:Classified}, for H in {H1,H2}. In fact,



www.manaraa.com

{Bob:Classified, Chuck:TopSecret} is equiva-
lent to {Chuck:TopSecret} tH {Bob:Classified},
for H in {H1,H2}.

More generally, for any two labels L1, L2 ∈ Lall

and any hierarchy H, it is the case that L1 ∪ L2 is
equivalent to the join of L1 and L2 in the hierar-
chy H. Thus the set union operation is universal, in
that it gives the join for all hierarchies. We formal-
ize this universality property in the following defi-
nition.

Definition 5.2: Let L be a class of labels, H be a
class of hierarchies, and ⊕ : L×L → L be a binary
operation on L.

• The operation ⊕ is a universal join for L with
respect to H if for all H ∈ H and L1, L2 ∈ L,
it holds that L1 ⊕ L2 ≡H L1 tH L2.

• The operation ⊕ is a universal meet for L with
respect to H if for all H ∈ H and L1, L2 ∈ L,
it holds that L1 ⊕ L2 ≡H L1 uH L2.

Example 5.3: As discussed above, the set union
operation ∪ is a universal join for Lall with respect
to any class of hierarchies H. This can be seen from
the proof of Theorem 4.3.

As pointed out in Section 4, the need to express
joins of labels is common. The existence of a uni-
versal join operation means that our model can ex-
press joins of labels even when the run-time hierar-
chy is unknown.

While it is apparent from Example 5.3 that many
instantiations of the model will have a universal join
operation, it is not so apparent that universal meet
operations exist. The following example shows that
they do exist for some instantiations.

Example 5.4: Suppose that H is a class of meet
hierarchies where for each hierarchy H ∈ H, the
owner hierarchy ≥H

o is the equality relation. More-
over, suppose that there is a “universal policy meet”
operation ∧ : P ×P → P such that for each H ∈ H
and p1, p2 ∈ P , the policy p1 ∧ p2 is equal to the
greatest lower bound of p1 and p2 with respect to
≥H

p . Note that the hierarchies of the decentralized
label model have a universal policy meet, namely,
the set union operation on reader sets, as discussed
in Section 3.1.

Recall that Lown−one denotes the class of labels
where each owner appears at most once, defined in
Section 3.3.

Define the operation ⊕ : Lown−one×Lown−one →
Lown−one by

L1 ⊕ L2 ={o(I):(p(I) ∧ p(J)) |
I ∈ L1, J ∈ L2,o(I) = o(J)}

It is straightforward to verify that ⊕ is a univer-
sal meet for Lown−one with respect to H.

5.2. Gaining Partial Knowledge of the
Run-time Hierarchy

If the system provides a mechanism for the run-
time testing of hierarchies, we may be able to glean
partial knowledge about the run-time hierarchy.
This additional knowledge can increase the preci-
sion of the static analysis.

Example 5.5: Suppose o actsfor o′ is a language
mechanism that tests at run time if owner o acts for
owner o′, that is, o actsfor o′ is true if and only if
o ≥H

o o′ for the run-time hierarchy H. Consider the
following program, in security typed pseudo-code.

1 int{Bob:TopSecret} x := ...;
2 int{Chuck:TopSecret} y;
3 if (Chuck actsfor Bob) {
4 y := x;
5 } else {
6 y := 0;
7 }

The assignment at line 4 causes information to
flow from the variable x to the variable y; in order
for this program to be noninterfering, the label of
the variable y must be at least as restrictive as the
label of the variable x.

Assume that H1 and H2 (as defined in Exam-
ple 5.1) are among the hierarchies that can occur at
runtime.

The assignment at line 4 is only executed if
the dynamic actsfor test evaluates to true, that
is, if the owner hierarchy of the run-time hier-
archy H includes the relationship (Chuck, Bob).
The assignment at line 4 is thus secure, since
{Bob:TopSecret} vH {Chuck:TopSecret}, so long
as Chuck acts for Bob according to H, as in the hi-
erarchy H1.

Note that if we ignored the partial knowledge
about the run-time hierarchy revealed by the dy-
namic actsfor test, and assumed that the run-time
hierarchy could be H2 even though the assign-
ment at line 4 is executed, then we could not re-
gard the program as secure. This is because Chuck
does not act for Bob according to H2, and so
{Bob:TopSecret} 6vH2 {Chuck:TopSecret}.



www.manaraa.com

Formally, we model the notion of partial knowl-
edge of the run-time hierarchy by the following par-
tial ordering ≤ on hierarchies.

Definition 5.6: The partial ordering ≤ on hierar-
chies is defined as follows: for any two hierarchies
H1, H2, it holds that H1 ≤ H2 if and only if

≥H2
o ⊆≥H1

o and ≥H2
p ⊆≥H1

p .

Intuitively, if H1 ≤ H2, then H1 is at least as
specific than H2, in that all acts-for relationships
present in H2 are present in H1, and similarly for
the policy relationships.

6. Label Inference

Program analysis can be used to prove that pro-
grams have various security properties. This gener-
ally requires that items of information manipulated
by the program have explicit security labels. The
security labels are often specified with program an-
notations. The need for explicit security labels can
impose a significant burden on developers of secure
systems, and, in the case of program annotations,
clutter program source code. It is thus natural to
consider the problem of automatically inferring se-
curity labels that are not specified. We call this the
label inference problem.

In this section, we study the problem of label in-
ference within our framework. We formalize the la-
bel inference problem as a constraint satisfaction
problem over a set of constraints of a certain form.
We present a general theorem demonstrating that
certain parameterizations of the inference problem
are polynomial time tractable, and use this general
theorem to derive a number of tractability results.

Definition 6.1: The Label Inference Problem
for a class of labels L and a class of hierarchies H.

Input: A finite set of variables V and a finite set
of constraints, each of which has the form

a1 t . . . t am v≤H b1 t . . . t bn

where H ∈ H is a hierarchy, and each ai and bj is
either a variable from V or a constant label L ∈ L.

Question: Is there a satisfying interpretation θ :
V → L? An interpretation θ : V → L is a satisfying
interpretation if for all given constraints

a1 t . . . t am v≤H b1 t . . . t bn

and all hierarchies H ′ ≤ H, it holds that

θ(a1)tH′ . . .tH′ θ(am) vH′ θ(b1)tH′ . . .tH′ θ(bn).

(An interpretation θ is assumed to act as the iden-
tity on constant labels L ∈ L.)

The variables in the constraints represent un-
known labels; a program analysis generates a set
of constraints such that the program will be consid-
ered secure if there a satisfying interpretation. For
instance, in Example 5.1, the label L of the pro-
gram variable z was not specified by the program-
mer. Suppose that the class of hierarchies H that
may occur at run time is {H1,H2}, where H1 and
H2 are as given in Example 5.1. Note that H1 is
more specific than H2, that is, H1 ≤ H2. The type
system of the programming language would require
that L satisfy the constraint {Chuck:TopSecret} t
{Bob:Classified} v≤H2 L in order for the program
to be well-typed and thus secure. The form of con-
straints we consider are sufficient to represent the
constraints used in the type systems of security
typed languages such as [23, 6, 19], among others.

Clearly, the Label Inference Problem is con-
tained in the complexity class NP, because an in-
terpretation has a polynomial size representation,
and whether or not it is satisfying can be checked
in polynomial time. In the case that we have a uni-
versal join operation, we can show that Label In-
ference Problem is polynomial time tractable.

Theorem 6.2: Suppose that L is a class of labels,
and H is a class of hierarchies. If there is a univer-
sal join⊕ forL with respect toH, then the Label In-
ference Problem for L andH is decidable in poly-
nomial time; moreover, there is a polynomial time al-
gorithm that outputs a most restrictive satisfying in-
terpretation, when a satisfying interpretation exists.

By a most restrictive satisfying interpretation, we
mean a satisfying interpretation θ : V → L such
that for any other satisfying interpretation θ′, it
holds that θ′(v) v≤H θ(v) for all v ∈ V and H ∈ H.

The proof of Theorem 6.2 is in Appendix A. The
proof makes use of the closure properties framework
for studying the complexity of constraint satisfac-
tion problems [8].

The algorithm is to enforce generalized arc con-
sistency (a standard procedure in constraint pro-
gramming) and then return satisfiable if and only if
there is no empty constraint. In the case that there
are no empty constraints, the most restrictive sat-
isfying interpretation maps a variable onto the uni-
versal join of all of its domain elements.

If the class of labels L and class of hierarchies H
have a universal meet operation, then an analogous
result holds, provided that for each H ∈ H, the pol-
icy hierarchy of H is a distributive lattice. In this



www.manaraa.com

case, the algorithm gives a least restrictive satisfy-
ing interpretation.

From Theorem 6.2, we can derive the following
corollaries.

Corollary 6.3: Let H be any class of hierarchies.
The Label Inference Problem for Lall and H is
decidable in polynomial time.

Proof: As noted in Example 5.3, the class of labels
Lall has a universal join operation with respect to
any class of hierarchies H; thus, the result follows
from Theorem 6.2.

When there is full knowledge of the run-time hi-
erarchy, or one does not care to reason about differ-
ent hierarchies that may be in effect at runtime, it
is useful to consider a class of hierarchies contain-
ing only a single hierarchy. In this case, label infer-
ence is tractable for any classes of labels that form
a join semilattice.

Corollary 6.4: Let H be any hierarchy and
L be any class of labels such that L forms a
join semilattice under the ordering vH . The
Label Inference Problem for L and {H} is de-
cidable in polynomial time.

Proof: If L forms a join semilattice under the or-
dering vH , then the join semilattice operation is a
universal join for L with respect to {H}; thus, the
result follows from Theorem 6.2.

In the case that no owner acts for another, as in
Section 3.3, we can use Theorem 6.2 to provide a
tractability result.

Corollary 6.5: Let H be a class of meet hierarchies
where for each hierarchy H ∈ H, the owner hierar-
chy ≥H

o is the equality relation, and, there is a “uni-
versal policy meet” operation, as in Example 5.4. The
Label Inference Problem for Lown−one andH is
decidable in polynomial time.

7. Related Work and Discussion

Our framework for owned policies is inspired
by the decentralized label model of Myers and
Liskov [16]. The decentralized label model allows
owners of information to independently specify in-
formation flow restrictions on the data, in the form
of sets of permitted readers, as explained in Sec-
tion 3.1. Our model generalizes the decentralized
label model by permitting arbitrary policies for re-
stricting information use, instead of just informa-
tion flow policies that are reader sets. In addition,
our work makes explicit the mechanism for static

reasoning about owned policies under partial knowl-
edge of the run-time hierarchy, and clearly distin-
guishes the notions of universal join/meet versus
hierarchy-specific join/meet. The decentralized la-
bel model does not make such a distinction clear,
and so its label inference algorithm (as presented in
[14]), while sound, is not complete and in fact may
fail to terminate.

Owner Retained Access Control (ORAC) [11] is
a model of owned policies for access control. ORAC
uses owned access control lists to approximate the
“originator-controlled release” dissemination con-
trols used by the U.S. DoD/Intelligence commu-
nity. When joining labels, the ORAC model joins
the policies owned by the same owner; thus in any
ORAC model, a given owner owns at most one pol-
icy, as in the class of labels Lown−one, described in
Section 3.3. However, in general the ORAC model
will not have a universal join operator, making static
reasoning about the ORAC model difficult. In [11],
ORAC is presented informally only; it is not clear
whether the ORAC model can be obtained as an in-
stantiation of our owned policy framework.

While our framework is applicable to several
kinds of information use, we see information flow as
a primary area of applicability. Following Denning’s
original work on the lattice model of information
flow control [2], there has been much recent work
on static information flow control in the form of se-
curity typed languages (e.g., [23, 6, 13, 7, 19, 1]).
Our work is compatible with most of these efforts,
which typically assume some lattice or semilattice
structure on labels; as we have shown, there are in-
stantiations of our model satisfying these assump-
tions.

Many systems need to downgrade information as
part of their intended functionality, that is, to re-
label information with a more permissive label. For
example, a system may be prepared to downgrade
some information to allow a user to access it af-
ter the user has paid for the information. There
has been much recent work focusing on what se-
curity guarantees can be made in the presence
of downgrading, including intransitive noninterfer-
ence [21, 17, 20], selective declassification [18, 16],
robust declassification [25, 24], quantitative informa-
tion flow (e.g., [12, 10, 3]), and relative secrecy [22].
Our framework does not preclude downgrading, and
is compatible with most of these efforts, which again
assume some structure on labels that instantiations
of our framework can satisfy.

Recent work by Zheng and Myers [26] establishes
a noninterference result in the presence of dynamic



www.manaraa.com

security labels. In their model of dynamic labels, se-
curity labels are first class values, and thus, informa-
tion can be revealed by knowing which security la-
bel is used at run time. Our model allows reasoning
about dynamic hierarchies through the use of classes
of hierarchies, and the constraints described in Sec-
tion 6. Classes of hierarchies can be used to model
dynamic owners and dynamic policies, that is, own-
ers and policies that are first-class values and ma-
nipulable at run time. However, our framework does
not permit dynamic labels. Extending our model to
incorporate dynamic labels will make for interest-
ing future work. This should allow suitable instan-
tiations of our framework to be used to reason about
dynamic labels, as in Zheng and Myers’ work, and
thus provide label inference for languages with dy-
namic labels.

8. Conclusion

We have presented and studied a general frame-
work for owned policies. Owned policies can occur
in a variety of contexts, including information flow,
access control and software licenses. While placing
few restrictions on the structure of owners and poli-
cies, the labels of our owned policy model have a
lattice structure, and can easily express joins of la-
bels, which arise naturally when information is com-
bined.

Our framework allows static reasoning about
owned policies, even when there is only partial
knowledge of the hierarchy that will be in effect at
run time; this facilitates the static analysis of sys-
tems. Static analysis is further facilitated by the
framework’s amenability to tractable label infer-
ence, even with only partial knowledge of the run-
time hierarchy. Label inference can also help system
development, allowing developers to elide some se-
curity label annotations.

Acknowledgements

We would like to thank Andrew Myers for in-
sights into and discussions about the decentralized
label model, and both René Hansen and Andrew
for interesting and enlightening discussions about
our framework for owned policies.

This work was supported by the Depart-
ment of the Navy, Office of Naval Research,
under ONR Grant N00014-01-1-0968. Any opin-
ions, findings, conclusions, or recommendations
contained in this material are those of the au-
thors and do not necessarily reflect the views of the

Office of Naval Research. This work was also sup-
ported by the National Science Foundation under
Grant Nos. 0208642 and 0133302.

A. Proof of Theorem 6.2

Proof: We first remark that a constraint

a1 t . . . t am v≤H b1 t . . . t bn

can be desugared into the m constraints of the form

ai v≤H b1 t . . . t bn

where i varies from 1 to m. It thus suffices to prove
the results for constraints of the latter form, which
we now proceed to do.

Define ≡H to be the equivalence relation such
that L1 ≡H L2 if and only if for all H ∈ H, L1 ≡H

L2. Suppose that two interpretations θ1, θ2 : V → L
are equivalent up to ≡H, that is, for all v ∈ V ,
θ1(v) ≡H θ2(v). It is straightforward to verify that
θ1 satisfies a constraint if and only if θ2 does. We
may thus re-phrase the Label Inference Prob-
lem as the problem of deciding if there is an in-
terpretation θ : V → L/ ≡H satisfying every con-
straint a v≤H b1t . . .t bn, in the sense that for any
L ∈ θ(a) and L1 ∈ θ(b1), . . . , Ln ∈ θ(bn), it holds
that L v≤H L1 tH . . . tH Ln.

It is straightforward to verify that the univer-
sal join operation ⊕ is well-defined on elements of
L/ ≡H, that is, if L1 ≡H L′1 and L2 ≡H L′2, then
L1⊕L2 ≡H L′1⊕L′2. The operation ⊕ thus naturally
induces an operation ⊕ : (L/ ≡H) × (L/ ≡H) →
L/ ≡H. It is straightforward to verify that ⊕ is a
semilattice operation, that is, ⊕ is associative, com-
mutative, and idempotent. The operation ⊕ hence
induces a partial ordering ≤⊕ defined by S ≤⊕ S′

if and only if S⊕S′ = S′.
Each constraint C of the described form a v≤H

b1 t . . . t bn has the property that when two in-
terpretations satisfying C are composed via the ⊕
operation, the resulting interpretation also satisfies
C. To show this, suppose that the interpretations
θ1, θ2 : V → L/ ≡H satisfy the constraint

a v≤H b1 t . . . t bn.

We claim that the interpretation θ : V → L/ ≡H
such that θ(v) = ⊕(θ1(v), θ2(v)) for all v ∈ V , also
satisfies the constraint. Indeed, for every hierarchy
H ′ ≤ H, we have that

θ1(a) vH′ θ1(b1) tH′ . . . tH′ θ1(bn)

and

θ2(a) vH′ θ2(b1) tH′ . . . tH′ θ2(bn),



www.manaraa.com

from which it follows that

θ1(a) tH′ θ2(a) vH′

(θ1(b1) tH′ θ2(b1)) tH′

. . . tH′ (θ1(bn) tH′ θ2(bn));

we conclude that

⊕(θ1(a), θ2(a)) vH′

⊕(θ1(b1), θ2(b1))tH′

. . . tH′ ⊕(θ1(bn), θ2(bn))

or equivalently, that

θ(a) vH′ θ(b1) tH′ . . . tH′ θ(bn).

(Note that we have implicitly overloaded thevH′ re-
lation and the tH′ operation; the original relation
and operation are defined over the set L, but nat-
urally induce a relation and operation defined over
the set L/ ≡H.)

By [8, Theorem 5.13], constraints of the described
form are tractable in polynomial time; moreover, the
algorithm given in the proof of [8, Theorem 5.13]
yields, in the case that the constraints are satisfi-
able, a satisfying interpretation θ : V → L/ ≡H
that is maximal with respect to ≤⊕. Any interpre-
tation θ : V → L such that θ(v) ∈ θ(v) for all v ∈ V
is a most restrictive interpretation.

References

[1] A.Banerjee andD.A.Naumann. Secure information
flowandpointer confinement in a Java-like language.
In IEEE Computer Security Foundations Workshop
(CSFW), June 2002.

[2] D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5):236–243,
1976.

[3] A. Di Pierro, C. Hankin, and H. Wiklicky. Approx-
imate non-interference. In Proc. 15th IEEE Com-
puter Security Foundations Workshop, pages 1–15,
June 2002.

[4] GNU general public license.
http://www.gnu.org/copyleft/gpl.html.

[5] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proc. IEEE Symposium on Secu-
rity and Privacy, pages 11–20, April 1982.

[6] N.Heintze andJ.G.Riecke. TheSLamcalculus:Pro-
gramming with secrecy and integrity. In Conference
Record of theTwenty-FifthAnnual ACMSymposium
onPrinciples ofProgrammingLanguages, pages365–
377, San Diego, California, January 1998.

[7] K. Honda and N. Yoshida. A uniform type structure
for secure information flow. In Conference Record

of the Twenty-Ninth Annual ACM Symposium on
Principles of Programming Languages, pages 81–92.
ACM Press, January 2002.

[8] P. Jeavons,D.Cohen, andM.Gyssens. Closureprop-
erties of constraints. Journal of the ACM, 44(4):527–
548, 1997.

[9] B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: Theory
and practice. In Proc. 13th ACM Symp. on Operat-
ing System Principles (SOSP), pages 165–182,Octo-
ber 1991. Operating System Review, 253(5).

[10] G. Lowe. Quantifying information flow. In Proc.
15th IEEE Computer Security Foundations Work-
shop, June 2002.

[11] C.J.McCollum,J.R.Messing,andL.Notargiacomo.
Beyond the pale of MAC and DAC—defining new
forms of access control. In Proc. IEEE Symposium
on Security and Privacy, pages 190–200, 1990.

[12] J. K. Millen. Covert channel capacity. In Proc. IEEE
Symposium on Security and Privacy, Oakland, CA,
1987.

[13] A. C. Myers. JFlow: Practical mostly-static infor-
mation flow control. In Conference Record of the
Twenty-Sixth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 228–241, San
Antonio, TX, January 1999.

[14] A. C. Myers. Mostly-static decentralized informa-
tion flow control. Technical Report MIT/LCS/TR-
783,MIT,Cambridge,MA,January1999. Ph.D. the-
sis.

[15] A.C.Myers andB.Liskov. Adecentralizedmodel for
information flow control. In Proc. 16th ACM Symp.
on Operating System Principles (SOSP), pages 129–
142, Saint-Malo, France, 1997.

[16] A. C. Myers and B. Liskov. Complete, safe informa-
tion flow with decentralized labels. In Proc. IEEE
Symposium on Security and Privacy, pages 186–197,
Oakland, CA, USA, May 1998.

[17] S. Pinsky. Absorbing covers and intransitive non-
interference. In Proc. IEEE Symposium on Security
and Privacy, pages 102–113, 1995.

[18] F. Pottier and S. Conchon. Information flow infer-
ence for free. In Proceedings of the 2000 ACM SIG-
PLAN International Conference on Functional Pro-
gramming, pages 46–57, 2000.

[19] F. Pottier and V. Simonet. Information flow infer-
ence for ML. In Conference Record of the Twenty-
NinthAnnualACMSymposiumonPrinciples ofPro-
gramming Languages, pages 319–330, 2002.

[20] A.W.RoscoeandM.H.Goldsmith. What is intransi-
tive noninterference? In Proc. 12th IEEE Computer
Security Foundations Workshop, 1999.

[21] J. Rushby. Noninterference, transitivity and
channel-control security policies. Technical report,
SRI, 1992.

[22] D. Volpano and G. Smith. Verifying secrets and rel-
ative secrecy. In Conference Record of the Twenty-
Seventh Annual ACM Symposium on Principles of



www.manaraa.com

Programming Languages, pages 268–276, Boston,
MA, January 2000.

[23] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996.

[24] S. Zdancewic. A type system for robust declassifica-
tion. In Proceedings of the Nineteenth Conference on
the Mathematical Foundations of Programming Se-
mantics, Electronic Notes in Theoretical Computer
Science, March 2003.

[25] S. Zdancewic and A. C. Myers. Robust declassifica-
tion. In Proc. 14th IEEE Computer Security Foun-
dations Workshop, pages 15–23, Cape Breton, Nova
Scotia, Canada, June 2001.

[26] L. Zheng and A. C. Myers. Dynamic security labels
and noninterference. Technical Report 2004–1924,
Cornell University Computing and Information Sci-
ence, 2004.


